Notes from Sylvia leading towards the construction of the Geometrical Figure for Shakespeare's King Lear

KING LEAR - Deducing the Figure from Basic Numbers
$8^{\text {th }}$ November 1991

	Sub- Totals			
ACT I $=$	$\mathbf{8 9 9}$ lines			
ACT II $=\uparrow 2286$	$\mathbf{6 7 1}$ lines	1570		
ACT III $=\uparrow 1615$	$\mathbf{5 3 9}$ lines	2109		
ACT IV $=\uparrow 1076$	$\mathbf{6 4 4}$ lines	2753		
ACT V $=$	$\mathbf{4 3 2}$ lines	3185		
		$\underline{\mathbf{3 1 8 5} \text { lines }}$		Total Number of Lines in Play

Small circles (Act Circles, ed) must be smaller than 432.400 convenient.
If 400 , Act I probably has 2 circles.
Try out
$1210=\left\{\begin{array}{rlrl}899-2 \times 400 & = & & \begin{array}{l}\text { (Lines left over ed) }\end{array} \\ 11^{2} \times 10 & \begin{array}{l}\text { (Sub total of } \\ \text { lines left over ed) }\end{array} \\ 571-400 & = & 271 & 370 \\ 649-400 & = & 139 & 509 \\ 432-400 & = & 244 & 753 \\ \hline 20 & = & 32 & \end{array}\right.$

785

Is there a simple ratio between 785 or 784 and 400 ?

$$
\begin{aligned}
& 784=49 \times 16 \\
& 400=25 \times 16 \\
& \therefore 784: 400=49: 25
\end{aligned}
$$

Suppose we take $1 / 4$ inch as unit
$49 \times 1 / 4=121 / 4=$ Diameter of Great Circle
$25 \times 1 / 4=61 / 4=$ Diameter of Small Circles
\therefore Figure can be constructed and drawn on a convenient scale.
Can one make a calibrated circle with 785? Esp. a circle overlapping one?
$785=784+1$
$784=49 \times 16=7^{2} \times 4^{2}$
16 is easy to subdivide by progressive bisection.
The 49 points to a 7 -pointed star. The later can be constructed to a nearly perfect degree of accuracy. In the C17th it was probably regarded as perfect.
\therefore Construct 7-pointed star and subdivide each of the divisions into 16 parts. Then each part will measure 7 lines.

Can one make a calibrated circle with 400 ?

$$
\begin{aligned}
400 & =40 \times 10 \\
& =80 \times 5
\end{aligned}
$$

\therefore One can construct a pentagram and subdivide each part into 8 , giving steps of 10 lines - and further, into 16 , giving steps of 5 lines.

KING LEAR - looking at the drawing.
$8^{\text {th }}$ November 1991
Diameter of the Great Circle $12^{11 / 4}$ inches $=49 \times 1 / 4$ inch. Radius $=61 / 8$ inches.
Diameter of Small Circles $=61 / 4$ inches $=25 \times 1 / 4$ inch.
Total of units in Great Circle $=784(+1)$
Total of units in each Small Circle $=400$
$784+6 \times 400+1$
$=784+2400+1$
$=3185$ = TOTAL NUMBER OF LINES IN THE PLAY

KING LEAR - From notes: 'King Lear figure details for Rose company'. 9' December 1991

ACT II	$=\mathbf{6 7 1}$ lines	$=$
ACT III	$=539$ lines	$=$

Therefore each small circle must be entered on half-line - awkward
But $671+539=1210=\underline{11^{2} \times 10}$. Is there a 121 rhythm throughout both Act? Yes! (see King Lear notes Nov 25th to Dec 26th 1991 ed.).

Could Act II lend one line to Act III in the geometry?
ACT II $=\mathbf{6 7 1 - 1}$ lines $=670=400+(2 \times 135$ [wing length] $)$
ACT III $=\mathbf{5 3 9}$ lines $+\mathbf{1}$ line $=540=400+(2 \times 70$ [wing length] $)$

Both Text and Figure seem to support this.

